Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-2. Orthogonal Diagonalization

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

Orthogonal Diagonalization and Symmetric Matrices

Quadratic Forms

Orthogonal Diagonalization and Symmetric Matrices

Quadratic Forms

Definition

An $n \times n$ matrix A is a orthogonal if its inverse is equal to its transpose, i.e., $A^{-1} = A^{T}$.

Definition

An $n \times n$ matrix A is a orthogonal if its inverse is equal to its transpose, i.e., $A^{-1} = A^{T}$.

Example

$$\frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad \frac{1}{7} \begin{bmatrix} 2 & 6 & -3 \\ 3 & 2 & 6 \\ -6 & 3 & 2 \end{bmatrix}$$

are orthogonal matrices (verify).

Theorem

The following are equivalent for an $n \times n$ matrix A.

- 1. A is orthogonal.
- 2. The rows of A are orthonormal.
- 3. The columns of A are orthonormal.

Theorem

The following are equivalent for an $n \times n$ matrix A.

- 1. A is orthogonal.
- 2. The rows of A are orthonormal.
- 3. The columns of A are orthonormal.

Proof.

"(1)
$$\iff$$
 (3)": Write $A = [\vec{a}_1, \cdots \vec{a}_n].$

A is orthogonal
$$\iff A^T A = I_n \iff \begin{pmatrix} \vec{a}_1^T \\ \vdots \\ \vec{a}_n \end{pmatrix} [\vec{a}_1, \cdots \vec{a}_n] = I_n$$

$$\iff \begin{bmatrix} \vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \cdots & \vec{a}_{1} \cdot \vec{a}_{n} \\ \vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \cdots & \vec{a}_{2} \cdot \vec{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a}_{n} \cdot \vec{a}_{1} & \vec{a}_{n} \cdot \vec{a}_{2} & \cdots & \vec{a}_{n} \cdot \vec{a}_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

"(1) \iff (2)": Similarly (Try it yourself).

Example

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -2 \\ -2 & 1 & 2 \\ 1 & 0 & 8 \end{bmatrix}$$

has orthogonal columns, but its rows are not orthogonal (verify).

Example

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -2 \\ -2 & 1 & 2 \\ 1 & 0 & 8 \end{bmatrix}$$

has orthogonal columns, but its rows are not orthogonal (verify). Normalizing the columns of A gives us the matrix

$$\mathbf{A}' = \begin{bmatrix} 2/3 & 1/\sqrt{2} & -1/3\sqrt{2} \\ -2/3 & 1/\sqrt{2} & 1/3\sqrt{2} \\ 1/3 & 0 & 4/3\sqrt{2} \end{bmatrix},$$

which has orthonormal columns. Therefore, A' is an orthogonal matrix.

Example

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -2 \\ -2 & 1 & 2 \\ 1 & 0 & 8 \end{bmatrix}$$

has orthogonal columns, but its rows are not orthogonal (verify). Normalizing the columns of A gives us the matrix

$$\mathbf{A}' = \begin{bmatrix} 2/3 & 1/\sqrt{2} & -1/3\sqrt{2} \\ -2/3 & 1/\sqrt{2} & 1/3\sqrt{2} \\ 1/3 & 0 & 4/3\sqrt{2} \end{bmatrix},$$

which has orthonormal columns. Therefore, A' is an orthogonal matrix.

If an $n \times n$ matrix has orthogonal rows (columns), then normalizing the rows (columns) results in an orthogonal matrix.

Example (Orthogonal Matrices: Products and Inverses)

Suppose A and B are orthogonal matrices.

1. Since

$$(AB)(B^{T}A^{T}) = A(BB^{T})A^{T} = AA^{T} = I.$$

and AB is square, $B^T A^T = (AB)^T$ is the inverse of AB, so AB is invertible, and $(AB)^{-1} = (AB)^T$. Therefore, AB is orthogonal.

Example (Orthogonal Matrices: Products and Inverses)

Suppose A and B are orthogonal matrices.

1. Since

$$(AB)(B^{T}A^{T}) = A(BB^{T})A^{T} = AA^{T} = I.$$

and AB is square, $B^T A^T = (AB)^T$ is the inverse of AB, so AB is invertible, and $(AB)^{-1} = (AB)^T$. Therefore, AB is orthogonal.

2. $A^{-1} = A^{T}$ is also orthogonal, since

$$(A^{-1})^{-1} = A = (A^{T})^{T} = (A^{-1})^{T}.$$

Example (Orthogonal Matrices: Products and Inverses)

Suppose A and B are orthogonal matrices.

1. Since

$$(AB)(B^{T}A^{T}) = A(BB^{T})A^{T} = AA^{T} = I.$$

and AB is square, $B^T A^T = (AB)^T$ is the inverse of AB, so AB is invertible, and $(AB)^{-1} = (AB)^T$. Therefore, AB is orthogonal.

2. $A^{-1} = A^{T}$ is also orthogonal, since

$$(A^{-1})^{-1} = A = (A^{T})^{T} = (A^{-1})^{T}.$$

Remark (Summary)

If A and B are orthogonal matrices, then AB is orthogonal and A^{-1} is orthogonal.

Orthogonal Diagonalization and Symmetric Matrices

Quadratic Forms

Orthogonal Diagonalization and Symmetric Matrices

Orthogonal Diagonalization and Symmetric Matrices

Definition

An $n \times n$ matrix A is orthogonally diagonalizable if there exists an orthogonal matrix, P, so that $P^{-1}AP = P^{T}AP$ is diagonal.

Definition

An $n \times n$ matrix A is orthogonally diagonalizable if there exists an orthogonal matrix, P, so that $P^{-1}AP = P^{T}AP$ is diagonal.

Theorem (Principal Axis Theorem)

Let A be an $n \times n$ matrix. The following conditions are equivalent.

- 1. A has an orthonormal set of n eigenvectors.
- 2. A is orthogonally diagonalizable.
- 3. A is symmetric.

Suppose $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ is an orthonormal set of n eigenvectors of A. Then $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ is a basis of \mathbb{R}^n , and hence $P = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$ is an orthogonal matrix such that $P^{-1}AP = P^TAP$ is a diagonal matrix. Therefore A is orthogonally diagonalizable.

Suppose that A is orthogonally diagonalizable. Then there exists an orthogonal matrix P such that P^TAP is a diagonal matrix. If P has columns $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$, then $B = {\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n}$ is a set of n orthonormal vectors in \mathbb{R}^n . Since B is orthogonal, B is independent; furthermore, since $|B| = n = \dim(\mathbb{R}^n)$, B spans \mathbb{R}^n and is therefore a basis of \mathbb{R}^n . Let $P^TAP = \operatorname{diag}(\ell_1, \ell_2, \ldots, \ell_n) = D$. Then AP = PD, so

$$A \begin{bmatrix} \vec{x_1} & \vec{x_2} & \cdots & \vec{x_n} \end{bmatrix} = \begin{bmatrix} \vec{x_1} & \vec{x_2} & \cdots & \vec{x_n} \end{bmatrix} \begin{bmatrix} \ell_1 & 0 & \cdots & 0 \\ 0 & \ell_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \ell_n \end{bmatrix}$$

A $\vec{x_1} A \vec{x_2} \cdots A \vec{x_n} \end{bmatrix} = \begin{bmatrix} \ell_1 \vec{x_1} & \ell_2 \vec{x_2} & \cdots & \ell_n \vec{x_n} \end{bmatrix}$

Thus $A\vec{x}_i = \ell_i \vec{x}_i$ for each i, $1 \le i \le n$, implying that B consists of eigenvectors of A. Therefore, A has an orthonormal set of n eigenvectors.

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and that P is an orthogonal matrix so that $P^{-1}AP = D$.

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and that P is an orthogonal matrix so that $P^{-1}AP = D$. Then $P^{-1}AP = P^{T}AP$, so

$$A = PDP^{T}$$
.

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and that P is an orthogonal matrix so that $P^{-1}AP = D$. Then $P^{-1}AP = P^{T}AP$, so

$$A = PDP^{T}$$
.

Taking transposes of both sides of the equation:

$$\begin{aligned} \mathbf{A}^{\mathrm{T}} &= (\mathbf{P}\mathbf{D}\mathbf{P}^{\mathrm{T}})^{\mathrm{T}} &= (\mathbf{P}^{\mathrm{T}})^{\mathrm{T}}\mathbf{D}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}} \\ &= \mathbf{P}\mathbf{D}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}} \quad (\text{since } (\mathbf{P}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{P}) \\ &= \mathbf{P}\mathbf{D}\mathbf{P}^{\mathrm{T}} \quad (\text{since } \mathbf{D}^{\mathrm{T}} = \mathbf{D}) \\ &= \mathbf{A}. \end{aligned}$$

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and that P is an orthogonal matrix so that $P^{-1}AP = D$. Then $P^{-1}AP = P^{T}AP$, so

$$A = PDP^{T}$$
.

Taking transposes of both sides of the equation:

$$\begin{aligned} \mathbf{A}^{\mathrm{T}} &= (\mathrm{P}\mathrm{D}\mathrm{P}^{\mathrm{T}})^{\mathrm{T}} &= (\mathrm{P}^{\mathrm{T}})^{\mathrm{T}}\mathrm{D}^{\mathrm{T}}\mathrm{P}^{\mathrm{T}} \\ &= \mathrm{P}\mathrm{D}^{\mathrm{T}}\mathrm{P}^{\mathrm{T}} \quad (\text{since } (\mathrm{P}^{\mathrm{T}})^{\mathrm{T}} = \mathrm{P}) \\ &= \mathrm{P}\mathrm{D}\mathrm{P}^{\mathrm{T}} \quad (\text{since } \mathrm{D}^{\mathrm{T}} = \mathrm{D}) \\ &= \mathrm{A}. \end{aligned}$$

Since $A^{T} = A$, A is symmetric.

If A is $n \times n$ symmetric matrix, we will prove by induction on n that A is orthogonal diagonalizable. If n = 1, A is already diagonalizable. If $n \ge 2$, assume that $(3) \Rightarrow (2)$ for all $(n - 1) \times (n - 1)$ symmetric matrix.

First we know that all eigenvalues are real (because A is symmetric). Let λ_1 be one real eigenvalue and \vec{x}_1 be the normalized eigenvector. We can extend $\{\vec{x}_1\}$ to an orthonormal basis of \mathbb{R}^n , say $\{\vec{x}_1, \dots, \vec{x}_n\}$ by adding vectors. Let $P_1 = [\vec{x}_1, \dots, \vec{x}_n]$. So P is orthogonal. Now we can apply the technical lemma proved in Section 5.5 to see that

$$\mathbf{P}_{1}^{\mathrm{T}}\mathbf{A}\mathbf{P}_{1} = \begin{bmatrix} \lambda_{1} & \mathbf{B} \\ \vec{0} & \mathbf{A}_{1} \end{bmatrix}.$$

Since LHS is symmetric, so does the RHS. This implies that B = O and A_1 is symmetric.

Proof. $((3) \Rightarrow (2) - \text{continued})$

By induction assumption, A_1 is orthogonal diagonalizable, i.e., for some orthogonal matrix Q and diagonal matrix D, $A_1 = QDQ^T$. Hence,

$$\mathbf{P}_{1}^{\mathrm{T}}\mathbf{A}\mathbf{P}_{1} = \begin{bmatrix} \lambda_{1} & \vec{\mathbf{0}}^{\mathrm{T}} \\ \vec{\mathbf{0}} & \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} 1 & \vec{\mathbf{0}}^{\mathrm{T}} \\ \vec{\mathbf{0}} & \mathbf{Q} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \vec{\mathbf{0}}^{\mathrm{T}} \\ \vec{\mathbf{0}} & \mathbf{D} \end{bmatrix} \begin{bmatrix} 1 & \vec{\mathbf{0}}^{\mathrm{T}} \\ \vec{\mathbf{0}} & \mathbf{Q}^{\mathrm{T}} \end{bmatrix}$$

which is nothing but

$$\begin{split} \mathbf{A} &= \mathbf{P}_{1} \begin{bmatrix} 1 & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{Q} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{D} \end{bmatrix} \begin{bmatrix} 1 & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{Q}^{\mathrm{T}} \end{bmatrix} \mathbf{P}_{1}^{\mathrm{T}} \\ &= \left(\mathbf{P}_{1} \begin{bmatrix} 1 & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{Q} \end{bmatrix} \right) \begin{bmatrix} \lambda_{1} & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{D} \end{bmatrix} \left(\mathbf{P}_{1} \begin{bmatrix} 1 & \vec{0}^{\mathrm{T}} \\ \vec{0} & \mathbf{Q} \end{bmatrix} \right)^{\mathrm{T}} \end{split}$$

Finally, it is ready to verify that the matrix

$$\mathbf{P}_1 \begin{bmatrix} 1 & \vec{\mathbf{0}}^{\mathrm{T}} \\ \vec{\mathbf{0}} & \mathbf{Q} \end{bmatrix}$$

is a diagonal matrix. This complete the proof of the theorem.

Definition

Let A be an $n \times n$ matrix. A set of n orthonormal eigenvectors of A is called a set of principal axes of A.

Orthogonally diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

Orthogonally diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

Solution

► $c_A(x) = (x+3)(x-3)^2$, so A has eigenvalues $\lambda_1 = 3$ of multiplicity two, and $\lambda_2 = -3$.

Orthogonally diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

Solution

► $c_A(x) = (x+3)(x-3)^2$, so A has eigenvalues $\lambda_1 = 3$ of multiplicity two, and $\lambda_2 = -3$.

► {
$$\vec{x}_1, \vec{x}_2$$
} is a basis of E₃(A), where $\vec{x}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and $\vec{x}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

Orthogonally diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

Solution

Orthogonally diagonalize the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

Solution

- $c_A(x) = (x+3)(x-3)^2$, so A has eigenvalues $\lambda_1 = 3$ of multiplicity two, and $\lambda_2 = -3$.
- ▶ { \vec{x}_1, \vec{x}_2 } is a basis of E₃(A), where $\vec{x}_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$ and $\vec{x}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$. ▶ { \vec{x}_3 } is a basis of E₋₃(A), where $\vec{x}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.
- ▶ $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ a linearly independent set of eigenvectors of A, and a basis of \mathbb{R}^3 .

▶ Orthogonalize $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ using the Gram-Schmidt orthogonalization algorithm.

▶ Orthogonalize $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ using the Gram-Schmidt orthogonalization algorithm.

► Let
$$\vec{f_1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{f_2} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$ and $\vec{f_3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ is an orthogonal basis of \mathbb{R}^3 consisting of eigenvectors of A.

▶ Orthogonalize $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ using the Gram-Schmidt orthogonalization algorithm.

► Let
$$\vec{f_1} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$
, $\vec{f_2} = \begin{bmatrix} -1\\2\\-1 \end{bmatrix}$ and $\vec{f_3} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Then $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ is an orthogonal basis of \mathbb{R}^3 consisting of eigenvectors of A.

• Since $||\vec{f_1}|| = \sqrt{2}$, $||\vec{f_2}|| = \sqrt{6}$, and $||\vec{f_3}|| = \sqrt{3}$,

$$\mathbf{P} = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

is an orthogonal diagonalizing matrix of A,

▶ Orthogonalize $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ using the Gram-Schmidt orthogonalization algorithm.

► Let
$$\vec{f_1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{f_2} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$ and $\vec{f_3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ is an orthogonal basis of \mathbb{R}^3 consisting of eigenvectors of A.

• Since $||\vec{f_1}|| = \sqrt{2}$, $||\vec{f_2}|| = \sqrt{6}$, and $||\vec{f_3}|| = \sqrt{3}$,

$$\mathbf{P} = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

is an orthogonal diagonalizing matrix of A, and

$$\mathbf{P}^{\mathrm{T}}\mathbf{A}\mathbf{P} = \left[\begin{array}{rrrr} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{array} \right].$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$(\lambda - \mu) \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \lambda (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) - \mu (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu) \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} &= \lambda (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) - \mu (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) \\ &= (\lambda \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (\mu \vec{\mathbf{y}}) \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu) \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} &= \lambda (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) - \mu (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) \\ &= (\lambda \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (\mu \vec{\mathbf{y}}) \\ &= (A \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (A \vec{\mathbf{y}}) \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu) \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} &= \lambda (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) - \mu (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) \\ &= (\lambda \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (\mu \vec{\mathbf{y}}) \\ &= (A \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (A \vec{\mathbf{y}}) \\ &= (A \vec{\mathbf{x}})^{\mathrm{T}} \vec{\mathbf{y}} - \vec{\mathbf{x}}^{\mathrm{T}} (A \vec{\mathbf{y}}) \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu) \vec{x} \cdot \vec{y} &= \lambda (\vec{x} \cdot \vec{y}) - \mu (\vec{x} \cdot \vec{y}) \\ &= (\lambda \vec{x}) \cdot \vec{y} - \vec{x} \cdot (\mu \vec{y}) \\ &= (A \vec{x}) \cdot \vec{y} - \vec{x} \cdot (A \vec{y}) \\ &= (A \vec{x})^{\mathrm{T}} \vec{y} - \vec{x}^{\mathrm{T}} (A \vec{y}) \\ &= \vec{x}^{\mathrm{T}} A^{\mathrm{T}} \vec{y} - \vec{x}^{\mathrm{T}} A \vec{y} \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu) \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} &= \lambda (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) - \mu (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}) \\ &= (\lambda \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (\mu \vec{\mathbf{y}}) \\ &= (A \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} - \vec{\mathbf{x}} \cdot (A \vec{\mathbf{y}}) \\ &= (A \vec{\mathbf{x}})^T \vec{\mathbf{y}} - \vec{\mathbf{x}}^T (A \vec{\mathbf{y}}) \\ &= \vec{\mathbf{x}}^T \mathbf{A}^T \vec{\mathbf{y}} - \vec{\mathbf{x}}^T \mathbf{A} \vec{\mathbf{y}} \\ &= \vec{\mathbf{x}}^T \mathbf{A} \vec{\mathbf{y}} - \vec{\mathbf{x}}^T \mathbf{A} \vec{\mathbf{y}} \quad \text{since A is symmetric} \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

$$\begin{aligned} (\lambda - \mu)\vec{x} \cdot \vec{y} &= \lambda(\vec{x} \cdot \vec{y}) - \mu(\vec{x} \cdot \vec{y}) \\ &= (\lambda \vec{x}) \cdot \vec{y} - \vec{x} \cdot (\mu \vec{y}) \\ &= (A\vec{x}) \cdot \vec{y} - \vec{x} \cdot (A\vec{y}) \\ &= (A\vec{x})^T \vec{y} - \vec{x}^T (A\vec{y}) \\ &= \vec{x}^T A^T \vec{y} - \vec{x}^T A \vec{y} \\ &= \vec{x}^T A \vec{y} - \vec{x}^T A \vec{y} \quad \text{since A is symmetric} \\ &= 0. \end{aligned}$$

If A is a symmetric matrix, then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof.

Suppose λ and μ are eigenvalues of A, $\lambda \neq \mu$, and let \vec{x} and \vec{y} , respectively, be corresponding eigenvectors, i.e., $A\vec{x} = \lambda \vec{x}$ and $A\vec{y} = \mu \vec{y}$. Consider $(\lambda - \mu)\vec{x} \cdot \vec{y}$.

$$\begin{aligned} (\lambda - \mu)\vec{x} \cdot \vec{y} &= \lambda(\vec{x} \cdot \vec{y}) - \mu(\vec{x} \cdot \vec{y}) \\ &= (\lambda \vec{x}) \cdot \vec{y} - \vec{x} \cdot (\mu \vec{y}) \\ &= (A\vec{x}) \cdot \vec{y} - \vec{x} \cdot (A\vec{y}) \\ &= (A\vec{x})^T \vec{y} - \vec{x}^T (A\vec{y}) \\ &= \vec{x}^T A^T \vec{y} - \vec{x}^T A \vec{y} \\ &= \vec{x}^T A \vec{y} - \vec{x}^T A \vec{y} \quad \text{since A is symmetric} \\ &= 0. \end{aligned}$$

Since $\lambda \neq \mu$, $\lambda - \mu \neq 0$, and therefore $\vec{x} \cdot \vec{y} = 0$, i.e., \vec{x} and \vec{y} are orthogonal.

Remark (Diagonalizing a Symmetric Matrix)

Let A be a symmetric $\mathbf{n}\times\mathbf{n}$ matrix.

- 1. Find the characteristic polynomial and distinct eigenvalues of A.
- 2. For each distinct eigenvalue λ of A, find an orthonormal basis of $E_A(\lambda)$, the eigenspace of A corresponding to λ . This requires using the Gram-Schmidt orthogonalization algorithm when dim $(E_A(\lambda)) \geq 2$.
- 3. By the previous theorem, the eigenvectors of distinct eigenvalues produce orthogonal eigenvectors, so the result is an orthonormal basis of \mathbb{R}^n .

Problem

Orthogonally diagonalize the matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{array} \right]$$

Problem

Orthogonally diagonalize the matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{array} \right]$$

Solution

1. Since row sum is 5, $\lambda_1 = 5$ is one eigenvalue, corresponding eigenvector should be $(1, 1, 1)^{\mathrm{T}}$. After normalization it should be

$$\vec{\mathbf{v}}_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$$

2. Since last two rows are identical, $\det(A) = 0$, so $\lambda_2 = 0$ is another eigenvalue, corresponding eigenvector should be $(0, 1, -1)^{T}$. After normalization it should be

$$\vec{\mathbf{v}}_2 = \begin{pmatrix} 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

3. Since $tr(A) = 7 = \lambda_1 + \lambda_2 + \lambda_3$, we see that $\lambda_3 = 7 - 5 - 0 = 2$. Its eigenvector should be orthogonal to both \vec{v}_1 and \vec{v}_2 , hence, $\vec{v}_3 = (2, -1, -1)$. After normalization,

$$\begin{pmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

3. Since $tr(A) = 7 = \lambda_1 + \lambda_2 + \lambda_3$, we see that $\lambda_3 = 7 - 5 - 0 = 2$. Its eigenvector should be orthogonal to both \vec{v}_1 and \vec{v}_2 , hence, $\vec{v}_3 = (2, -1, -1)$. After normalization,

$$\begin{pmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Hence, we have

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

Orthogonal Matrices

Orthogonal Diagonalization and Symmetric Matrices

Quadratic Forms

Quadratic Forms

Definitions

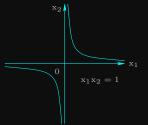
Let q be a real polynomial in variables x_1 and x_2 such that

$$q(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2.$$

Then q is called a quadratic form in variables x_1 and x_2 . The term bx_1x_2 is called the cross term. The graph of the equation $q(x_1, x_2) = 1$, is call a conic in variables x_1 and x_2 .

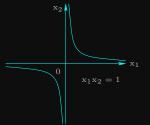
Example

Below is the graph of the equation $x_1x_2 = 1$.



Example

Below is the graph of the equation $x_1x_2 = 1$.



Let y_1 and y_2 be new variables such that

$$x_1 = y_1 + y_2$$
 and $x_2 = y_1 - y_2$,

i.e., $y_1 = \frac{x_1 + x_2}{2}$ and $y_2 = \frac{x_1 - x_2}{2}$. Then $x_1 x_2 = y_1^2 - y_2^2$, and $y_1^2 - y_2^2$ is a quadratic form with no cross terms, called a diagonal quadratic form;

Example

Below is the graph of the equation $x_1x_2 = 1$.

Let y_1 and y_2 be new variables such that

$$x_1 = y_1 + y_2$$
 and $x_2 = y_1 - y_2$,

i.e., $y_1 = \frac{x_1 + x_2}{2}$ and $y_2 = \frac{x_1 - x_2}{2}$. Then $x_1 x_2 = y_1^2 - y_2^2$, and $y_1^2 - y_2^2$ is a quadratic form with no cross terms, called a diagonal quadratic form; y_1 and y_2 are called principal axes of the quadratic form $x_1 x_2$.

Principal axes of a quadratic form can be found by using orthogonal diagonalization.

Principal axes of a quadratic form can be found by using orthogonal diagonalization.

Problem

Find principal axes of the quadratic form $q(x_1, x_2) = x_1^2 + 6x_1x_2 + x_2^2$, and transform $q(x_1, x_2)$ into a diagonal quadratic form.

Principal axes of a quadratic form can be found by using orthogonal diagonalization.

Problem

Find principal axes of the quadratic form $q(x_1, x_2) = x_1^2 + 6x_1x_2 + x_2^2$, and transform $q(x_1, x_2)$ into a diagonal quadratic form.

Solution

Express $q(x_1, x_2)$ as a matrix product:

$$\mathbf{q}(\mathbf{x}_1, \mathbf{x}_2) = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} 1 & 6\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2 \end{bmatrix}. \tag{1}$$

We want a 2×2 symmetric matrix. Since $6x_1x_2 = 3x_1x_2 + 3x_2x_1$, we can rewrite (1) as

$$q(\mathbf{x}_1, \mathbf{x}_2) = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2 \end{bmatrix}.$$
(2)
Setting $\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2 \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix}$, $q(\mathbf{x}_1, \mathbf{x}_2) = \vec{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \vec{\mathbf{x}}$.
We now orthogonally diagonalize A.

$$c_A(z) = \begin{vmatrix} z - 1 & -3 \\ -3 & z - 1 \end{vmatrix} = (z - 4)(z + 2),$$

so A has eigenvalues $\lambda_1 = 4$ and $\lambda_2 = -2$.

$$c_A(z) = \begin{vmatrix} z - 1 & -3 \\ -3 & z - 1 \end{vmatrix} = (z - 4)(z + 2),$$

so A has eigenvalues $\lambda_1 = 4$ and $\lambda_2 = -2$.

$$ec{\mathbf{z}_1} = \left[egin{array}{c} 1 \\ 1 \end{array}
ight] \quad ext{and} \quad ec{\mathbf{z}_2} = \left[egin{array}{c} -1 \\ 1 \end{array}
ight]$$

are eigenvectors corresponding to $\lambda_1 = 4$ and $\lambda_2 = -2$, respectively. Normalizing these eigenvectors gives us the orthogonal matrix

$$\mathbf{P} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ such that } \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} = \mathbf{D}.$$

$$c_A(z) = \begin{vmatrix} z - 1 & -3 \\ -3 & z - 1 \end{vmatrix} = (z - 4)(z + 2),$$

so A has eigenvalues $\lambda_1 = 4$ and $\lambda_2 = -2$.

$$ec{\mathbf{z}_1} = \left[egin{array}{c} 1 \\ 1 \end{array}
ight] \quad ext{and} \quad ec{\mathbf{z}_2} = \left[egin{array}{c} -1 \\ 1 \end{array}
ight]$$

are eigenvectors corresponding to $\lambda_1 = 4$ and $\lambda_2 = -2$, respectively. Normalizing these eigenvectors gives us the orthogonal matrix

$$\mathbf{P} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ such that } \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} = \mathbf{D}.$$

Thus $A = PDP^{T}$, and

$$q(x_1, x_2) = \vec{x}^T A \vec{x} = \vec{x}^T (P D P^T) \vec{x} = (\vec{x}^T P) D (P^T \vec{x}) = (P^T \vec{x})^T D (P^T \vec{x}).$$

Let

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = P^T \vec{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} x_1 + x_2 \\ x_2 - x_1 \end{bmatrix}$$

Then

$$q(y_1, y_2) = \vec{y}^T D \vec{y} = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 4y_1^2 - 2y_2^2.$$

Let

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = P^T \vec{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} x_1 + x_2 \\ x_2 - x_1 \end{bmatrix}$$

Then

$$\mathbf{q}(\mathbf{y}_1, \mathbf{y}_2) = \vec{\mathbf{y}}^{\mathrm{T}} \mathbf{D} \vec{\mathbf{y}} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = 4\mathbf{y}_1^2 - 2\mathbf{y}_2^2.$$

Therefore, the principal axes of $q(x_1, x_2) = x_1^2 + 6x_1x_2 + x_2^2$ are

$$\mathbf{y}_1 = \frac{1}{\sqrt{2}} (\mathbf{x}_1 + \mathbf{x}_2)$$

and

$$y_2 = \frac{1}{\sqrt{2}}(x_2 - x_1),$$

yielding the diagonal quadratic form

$$q(y_1, y_2) = 4y_1^2 - 2y_2^2.$$

Problem

Find principal axes of the quadratic form

$$q(x_1,x_2)=7x_1^2-4x_1x_2+4x_2^2,\\$$

and transform $q(x_1, x_2)$ into a diagonal quadratic form.

Problem

Find principal axes of the quadratic form

$$q(x_1, x_2) = 7x_1^2 - 4x_1x_2 + 4x_2^2,$$

and transform $q(x_1, x_2)$ into a diagonal quadratic form.

Solution (Final Answer)

 $q(x_1, x_2)$ has principal axes

$$y_1 = \frac{1}{\sqrt{5}}(-2x_1 + x_2),$$

$$y_2 = \frac{1}{\sqrt{5}}(x_1 + 2x_2).$$

yielding the diagonal quadratic form

$$q(y_1, y_2) = 8y_1^2 + 3y_2^2.$$

Theorem (Triangulation Theorem – Schur Decomposition) Let A be an $n \times n$ matrix with n real eigenvalues. Then there exists an orthogonal matrix P such that $P^{T}AP$ is upper triangular.

Corollary

Let A be an $n \times n$ matrix with real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, not necessarily distinct. Then $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ and $tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Corollary

Let A be an $n \times n$ matrix with real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, not necessarily distinct. Then $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ and $tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Proof.

By the theorem, there exists an orthogonal matrix P such that $P^{T}AP = U$, where U is an upper triangular matrix. Since P is orthogonal, $P^{T} = P^{-1}$, so U is similar to A; thus the eigenvalues of U are $\lambda_1, \lambda_2, \ldots, \lambda_n$. Furthermore, since U is (upper) triangular, the entries on the main diagonal of U are its eigenvalues, so det(U) = $\lambda_1 \lambda_2 \cdots \lambda_n$ and tr(U) = $\lambda_1 + \lambda_2 + \cdots + \lambda_n$. Since U and A are similar, det(A) = det(U) and tr(A) = tr(U), and the result follow.