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Orthogonal Matrices

Definition

An n X n matrix A is a orthogonal if its inverse is equal to its transpose,
ie, A7l = AT,



Orthogonal Matrices

Definition
An n X n matrix A is a orthogonal if its inverse is equal to its transpose,
ie, Al = AT,
Example
V2T 1 1 1 26 -3
5 | -1 1 and = 3 2 6
-6 3 2

are orthogonal matrices (verify).



Theorem

The following are equivalent for an n x n matrix A.
1. A is orthogonal.
2. The rows of A are orthonormal.

3. The columns of A are orthonormal.



Theorem

The following are equivalent for an n x n matrix A.
1. A is orthogonal.
2. The rows of A are orthonormal.

3. The columns of A are orthonormal.

Proof.
“(1) < (3)": Write A = [&, - &n].
ai
A is orthogonal <= ATA =1, < | : | [, - 8] =14
an
. L L 1
ai - aj al - ag ajl * an
a2 - al 3) 32 5:2 ﬁn 0
e =
é:n'éjl éjn'éé 5,]'511 0

“(1) < (2)": Similarly (Try it yourself).



Example

2 1
A= -2 1 2
1 0 8

has orthogonal columns, but its rows are not orthogonal (verify).



Example
2 1
A= -2 1 2
1 0 8

has orthogonal columns, but its rows are not orthogonal (verify).

Normalizing the columns of A gives us the matrix

2/3 1/vV2 —1/3v2
A= —2/3 1/vV2 1/3v2 |,
1/3 0 4/3v2

which has orthonormal columns. Therefore, A’ is an orthogonal matrix.



Example
2 1
A= -2 1 2
1 0 8

has orthogonal columns, but its rows are not orthogonal (verify).

Normalizing the columns of A gives us the matrix

2/3 1/vV2 —1/3v2
A= —2/3 1/vV2 1/3v2 |,
1/3 0 4/3v2

which has orthonormal columns. Therefore, A’ is an orthogonal matrix.

If an n X n matrix has orthogonal rows (columns), then normalizing the
rows (columns) results in an orthogonal matrix.



Example ( Orthogonal Matrices: Products and Inverses )
Suppose A and B are orthogonal matrices.
1. Since
(AB)(BTAT) = ABBT)AT = AAT =1

and AB is square, BTAT = (AB)7 is the inverse of AB, so AB is
invertible, and (AB)~! = (AB)"™. Therefore, AB is orthogonal.
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Suppose A and B are orthogonal matrices.

1. Since
(AB)(BTAT) = ABBT)AT = AAT =1

and AB is square, BTAT = (AB)7 is the inverse of AB, so AB is
invertible, and (AB)~! = (AB)"™. Therefore, AB is orthogonal.

2. A=' = A" is also orthogonal, since

(AA71)71 = A = (AT)T _ (Afl)T'



Example ( Orthogonal Matrices: Products and Inverses )
Suppose A and B are orthogonal matrices.

1. Since
(AB)(BTAT) = ABBT)AT = AAT =1

and AB is square, BTAT = (AB)7 is the inverse of AB, so AB is
invertible, and (AB)~! = (AB)"™. Therefore, AB is orthogonal.

2. A=' = A" is also orthogonal, since

(Afl)fl = A = (AT)T _ (Afl)T'

Remark ( Summary )

If A and B are orthogonal matrices, then AB is orthogonal and A~! is
orthogonal.
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Orthogonal Diagonalization and Symmetric Matrices

Definition

An n X n matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix, P, so that P"*AP = PTAP is diagonal.



Orthogonal Diagonalization and Symmetric Matrices

Definition

An n X n matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix, P, so that P"*AP = PTAP is diagonal.

Theorem (Principal Axis Theorem)

Let A be an n X n matrix. The following conditions are equivalent.
1. A has an orthonormal set of n eigenvectors.
2. A is orthogonally diagonalizable.

3. A is symmetric.



Proof. ( (1) = (2))

Suppose {X1,X2,...,Xn} is an orthonormal set of n eigenvectors of A. Then
{X1,%X2,...,Xn} is a basis of R", and hence P = [ X1 Xo o0 X ] is an
orthogonal matrix such that P~'AP = PTAP is a diagonal matrix.
Therefore A is orthogonally diagonalizable.



Proof. ( (2) = (1))

Suppose that A is orthogonally diagonalizable. Then there exists an
orthogonal matrix P such that PTAP is a diagonal matrix. If P has
columns X1, Xa, ..., Xy, then B = {X,X5,...,X,} is a set of n orthonormal
vectors in R". Since B is orthogonal, B is independent; furthermore, since
IB| = n = dim(R"), B spans R" and is therefore a basis of R".

Let PTAP = diag(f1, 2, . .., 4n) = D. Then AP = PD, so

lr 0 (0]
O 0]
A[Xﬁ X5 X;] = [Xﬁ X5 .- X;] :
0 0 t
[Ax_i Axy - AX_;]:I = [le_i loxXy - EHX_{,]

Thus AX; = 4iX; for each i, 1 <i < n, implying that B consists of
eigenvectors of A. Therefore, A has an orthonormal set of n eigenvectors.



Proof. ((2) = (3))

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and
that P is an orthogonal matrix so that P"*AP = D.



Proof. ((2) = (3))
Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and
that P is an orthogonal matrix so that P"'AP = D. Then P~'AP = PTAP,

SO
A =PDPT.



Proof. ((2) = (3))

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and
that P is an orthogonal matrix so that P"'AP = D. Then P~'AP = PTAP,

SO
A =PDPT.

Taking transposes of both sides of the equation:
AT _ (PDPT)T _ (PT)TDTPT
= PD"PT (since (PT)" =P)
— PDPT (since DT = D)
A.



Proof. ((2) = (3))

Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and
that P is an orthogonal matrix so that P"'AP = D. Then P~'AP = PTAP,
SO

A =PDP".

Taking transposes of both sides of the equation:
AT _ (PDPT)T _ (PT)TDTPT
= PD"PT (since (PT)" =P)
— PDPT (since DT = D)
A.

Since AT = A, A is symmetric.



Proof. ((3) = (2))

If A is n X n symmetric matrix, we will prove by induction on n that A is
orthogonal diagonalizable. If n = 1, A is already diagonalizable. If n > 2,
assume that (3)=-(2) for all (n — 1) x (n — 1) symmetric matrix.

First we know that all eigenvalues are real (because A is symmetric). Let
A1 be one real eigenvalue and X; be the normalized eigenvector. We can
extend {X1} to an orthonormal basis of R*, say {X1, - ,Xa} by adding
vectors. Let P1 = [X1,---,Xn]. So P is orthogonal.

Now we can apply the technical lemma proved in Section 5.5 to see that

rip [N B
PlAP1—|:6 A1:|

Since LHS is symmetric, so does the RHS. This implies that B = O and A;
is symmetric.



Proof. ((3) = (2) — continued)

By induction assumption, A; is orthogonal diagonalizable, i.e., for some
orthogonal matrix Q and diagonal matrix D, A; = QDQT. Hence,

= =7 =ap =7
PTAP, = A1 v | = L0 o O OT
0 QDQ 0 Q|0 DJ|[0 Q
which is nothing but

Finally, it is ready to verify that the matrix
iy

P, [l 0 }
0 Q

is a diagonal matrix. This complete the proof of the theorem.



Definition

Let A be an n X n matrix. A set of n orthonormal eigenvectors of A is
called a set of principal axes of A.



Problem
Orthogonally diagonalize the matrix
1 -2 =2

A=| -2 1 =2
=2 =2 1



Problem

Orthogonally diagonalize the matrix

1 =2 =2
A=| -2 1 =2
=2 =2 1

Solution

> ca(x) = (x+3)(x — 3)?, so A has eigenvalues \; = 3 of multiplicity
two, and Ao = —3.



Problem

Orthogonally diagonalize the matrix

1 =2 =2
A=| -2 1 =2
=2 =2 1

Solution

> ca(x) = (x+3)(x — 3)?, so A has eigenvalues \; = 3 of multiplicity
two, and Ao = —3.
—1 —1
> {Xi,X2} is a basis of Eg(A), where X1 = 0 | and X> = 1
1 (0]



Problem

Orthogonally diagonalize the matrix

1 =2 =2
A=| -2 1 =2
=2 =2 1

Solution

> ca(x) = (x+3)(x — 3)?, so A has eigenvalues \; = 3 of multiplicity
two, and Ao = —3.

—1 —1
> {Xi,X2} is a basis of Eg(A), where X1 = 0 | and X> = 1
1 (0]

» {X3} is a basis of E_3(A), where X3 =

=



Problem

Orthogonally diagonalize the matrix

1 =2 =2
A=| -2 1 =2
=2 =2 1

Solution

> ca(x) = (x+3)(x — 3)?, so A has eigenvalues \; = 3 of multiplicity
two, and Ao = —3.

—1 —1
> {Xi,X2} is a basis of Eg(A), where X1 = 0 | and X> = 1
1 (0]
1
» {X3} is a basis of E_3(A), where X3 = | 1
1

» {%1,X2,X3} a linearly independent set of eigenvectors of A, and a basis
of R®.



Solution (continued)

» Orthogonalize {X1,X2,X3} using the Gram-Schmidt orthogonalization
algorithm.



Solution (continued)

» Orthogonalize {X1,X2,X3} using the Gram-Schmidt orthogonalization

algorithm.
~ —1 —1 = 1 -
» Let f; = 0 |,f2= 2 | and f3 = | 1 |. Then {fi,f>,f3} is an
1 —1 1

orthogonal basis of R® consisting of eigenvectors of A.



Solution (continued)

» Orthogonalize {X1,X2,X3} using the Gram-Schmidt orthogonalization

algorithm.
~ —1 —1 = 1
» Let f; = 0 |,f2= 2 | and f3 = | 1 |. Then {fi,f>,f3} is an
1 —1 1

orthogonal basis of R® consisting of eigenvectors of A.

> Since [[fa]| = V2, ||fz|| = V6, and ||fs]| = V3,

-1/vV2 —1/v/6 1/V3
P = 0 2/V/6  1//3
1/vV/2  —1/V6 1/4/3

is an orthogonal diagonalizing matrix of A,



Solution (continued)

» Orthogonalize {X1,X2,X3} using the Gram-Schmidt orthogonalization

algorithm.
~ —1 —1 = 1
» Let f; = 0 |,f2= 2 | and f3 = | 1 |. Then {fi,f>,f3} is an
1 —1 1

orthogonal basis of R® consisting of eigenvectors of A.

> Since [[fa]| = V2, ||fz|| = V6, and ||fs]| = V3,

-1/vV2 —1/v/6 1/V3
P = 0 2/V/6  1//3
1/vV/2  —1/V6 1/4/3

is an orthogonal diagonalizing matrix of A, and

30 0
PTAP=|0 3 0
0 0 -3



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A-—wx-y = MX-¥)—pE-7)



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A-—wx-y = MX-¥)—pE-7)



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A-px-y =
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Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A—px-§ = ME-§) —pE ¥
= (\R)-§-%- (u)
= (A%) §—%-(Ay)
= (A%)Ty —x"(Ay)



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider

(A— 5.

A—px-¥

AR ¥) = w(z-3)
(M%) -7 =%+ (uF)
(A%) -7 — % (A7)
(A%)"§ — %" (A7)



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A—px-§ = ME-§) —pE ¥
= (\R)-§-%- (u)
= (A%) §—%-(Ay)
= (A%)Ty —x"(Ay)
_ )—(»TAT}—;_—»TAy»

= X Ay—X Ay since A is symmetric



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider
(A—p)- 5.

A—px-§ = ME-§) —pE ¥
= (\R)-§-%- (u)
= (A%) §—%-(Ay)
= (A%)Ty —x"(Ay)
_ )—(»TAT}—;_—»TAy»

= X Ay—X Ay since A is symmetric



Theorem

If A is a symmetric matrix, then the eigenvectors of A corresponding to

distinct eigenvalues are orthogonal.

Proof.

Suppose A and p are eigenvalues of A, A # u, and let X and ¥, respectively,
be corresponding eigenvectors, i.e., AX = AX and Ay = py. Consider

(A—p)- 5.
A-px-§ = AE-§) - pE-7)
= (AX)-¥—X- (1)
= (A%)-§—X-(AY)
= (A9)Ty -7 (A7)
= fTATy_xTAy
= xTAy-—TAy since A is symmetric
0.
Since A # p, A — p # 0, and therefore X - ¥ = 0, i.e., X and y are orthogonal.



Remark ( Diagonalizing a Symmetric Matrix )
Let A be a symmetric n X n matrix.
1. Find the characteristic polynomial and distinct eigenvalues of A.

2. For each distinct eigenvalue A of A, find an orthonormal basis of
Ea(A), the eigenspace of A corresponding to A. This requires using the
Gram-Schmidt orthogonalization algorithm when dim(Ea (X)) > 2.

3. By the previous theorem, the eigenvectors of distinct eigenvalues

produce orthogonal eigenvectors, so the result is an orthonormal basis
of R".



Problem
Orthogonally diagonalize the matrix

3
A=1|1
1

NN~

NN =



Problem

Orthogonally diagonalize the matrix

3
A=1|1
1

NN~
NN

Solution

1. Since row sum is 5, Ay = 5 is one eigenvalue, corresponding eigenvector
should be (1,1,1)*. After normalization it should be

<t
|
S-Sl



Solution (continued)

2. Since last two rows are identical, det(A) = 0, so A2 = 0 is another
eigenvalue, corresponding eigenvector should be (0,1, —1)T. After
normalization it should be

N
I
o



Solution (continued)

3. Since tr(A) =7 = X1 + A2 + A3, we see that A3 =7—5—0=2. Its
eigenvector should be orthogonal to both ¥; and V2, hence,
Vs = (2,—1,—1). After normalization,



Solution (continued)

3. Since tr(A) =7 = X1 + A2 + A3, we see that A3 =7—5—0=2. Its
eigenvector should be orthogonal to both ¥; and V2, hence,
Vs = (2,—1,—1). After normalization,

Ve

A

V2

Hence, we have

31 1 0 = =Z=lfo o ofe = =
2 a9|l=|l= == =0 2 0| —= ==
- vz V2 V3 V6 V2 V2
1 2 2 1T Tlfp o 5| L L L
V2 V2 V3 V3 V3 V3
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Quadratic Forms

Definitions
Let q be a real polynomial in variables x; and x2 such that
q(x1,x2) = axs + bxixa + cx3.

Then q is called a quadratic form in variables x; and x3. The term bxixs is
called the cross term. The graph of the equation q(x1,x2) = 1, is call a
conic in variables x; and xs.



Example

Below is the graph of the equation x1x2 = 1.

X2

X1x9 =1




Example

Below is the graph of the equation x1x2 = 1.

X2

X1x9 =1

Let y1 and y2 be new variables such that
X1 =y1+y2 and X2=y1—yo,

a X1 +x B — 2 2 2 2 -
ie, y1 = 572 and y2 = =572, Then xix2 = yi —y3, and y] —y3 isa
quadratic form with no cross terms, called a diagonal quadratic form;



Example

Below is the graph of the equation x1x2 = 1.

X2

X1x9 =1

Let y1 and y2 be new variables such that
X1 =y1+y2 and X2=y1—yo,

. x1+x X1—X 2 2 2 2
ie, y1 = 572 and y2 = 572, Then xix2 = yi —y3,and y1 —y3 isa
quadratic form with no cross terms, called a diagonal quadratic form; y;
and ys are called principal axes of the quadratic form x;xs.



Principal axes of a quadratic form can be found by using orthogonal
diagonalization.



Principal axes of a quadratic form can be found by using orthogonal
diagonalization.

Problem

Find principal axes of the quadratic form q(x1,x2) = x2 + 6x1x2 + x2, and
transform q(x1,x2) into a diagonal quadratic form.



Principal axes of a quadratic form can be found by using orthogonal
diagonalization.

Problem

Find principal axes of the quadratic form q(x1,x2) = x2 + 6x1x2 + x2, and
transform q(x1,x2) into a diagonal quadratic form.

Solution
Express q(x1,x2) as a matrix product:
1 6 X1
q(x1,X2):[X1 X2}|:0 1][){2]' (1)

We want a 2 X 2 symmetric matrix. Since 6x1x2 = 3x1X2 + 3X2X1, We can
rewrite (1) as

ax1, %) = [ %1 xQ}H 51””2] )

1 3 A o =
3 1 }, q(x1,x2) = XTAR.
We now orthogonally diagonalize A.

Setting X = [ . } and A =
X2



Solution (continued)

z—1 -3

Call) = -3 z—1

= -4+,

so A has eigenvalues \1 =4 and Ay = —2.



Solution (continued)

=1 =)
ca(z) = 3 a1 ’—(2—4)(2—1—2)7
so A has eigenvalues \1 =4 and Ay = —2.
. 1 . -1
21:{1} and 22:[ 1}
are eigenvectors corresponding to A1 = 4 and A2 = —2, respectively.

Normalizing these eigenvectors gives us the orthogonal matrix

1 [1 -1 Tap_| 4 0 |_
P—E[l 1 } such that PAP—{O _2}—D.



Solution (continued)

=1 =)
ca(z) = 3 a1 ’—(2—4)(2—1—2)7
so A has eigenvalues \1 =4 and Ay = —2.
. 1 . -1
21:{1} and 22:[ 1}
are eigenvectors corresponding to A1 = 4 and A2 = —2, respectively.

Normalizing these eigenvectors gives us the orthogonal matrix

1 [1 -1 Tap_| 4 0 |_
P—E[l 1 } such that PAP—{O _2}—D.

Thus A = PDPT, and

a(x1,x2) = TAR = X7 (PDP)X = (XTP)D(PTR) = (PTR)'D(PT=R).



Solution (continued)
Let



Solution (continued)
Let

 ATpe 4 0 i | 42 o
a(y1,y2) =5 Dy = [ »n yz]{o 72Hy2]—4y1 2y5.

Therefore, the principal axes of q(x1,%2) = X3 + 6x1X2 + X3 are

1
y1 = ——(x1 + x2)
2
and
L(X —x1)
y2 \/i 2 1),

yielding the diagonal quadratic form

a(y1,y2) = 4y? — 2y3.



Problem

Find principal axes of the quadratic form
q(x1,x2) = Tx2 — 4x1x2 + 4x3,

and transform q(x1,x2) into a diagonal quadratic form.



Problem

Find principal axes of the quadratic form
q(x1,x2) = Tx2 — 4x1x2 + 4x3,

and transform q(x1,x2) into a diagonal quadratic form.

Solution ( Final Answer )

q(x1,x2) has principal axes

yi o= (—2x1 + x2),

Hg\H
(&)

y2 = 7(X1 + 2X2).

E

yielding the diagonal quadratic form

a(y1,y2) = 8y1 + 3ys.



Theorem (Triangulation Theorem — Schur Decomposition)

Let A be an n X n matrix with n real eigenvalues. Then there exists an
orthogonal matrix P such that PTAP is upper triangular.



Corollary

Let A be an n X n matrix with real eigenvalues A1, A2, . .., An, not necessarily
distinct. Then det(A) = XAz -+ Ay and tr(A) = A1 + A2 + -+ - + An.



Corollary

Let A be an n X n matrix with real eigenvalues A1, A2, . .., An, not necessarily
distinct. Then det(A) = XAz -+ Ay and tr(A) = A1 + A2 + -+ - + An.

Proof.

By the theorem, there exists an orthogonal matrix P such that PTAP = U,
where U is an upper triangular matrix. Since P is orthogonal, PT = P!, so
U is similar to A; thus the eigenvalues of U are A1, A2, ..., A\n. Furthermore,
since U is (upper) triangular, the entries on the main diagonal of U are its
eigenvalues, so det(U) = A2+ An and tr(U) = A\ + A2 + -+ - + An. Since
U and A are similar, det(A) = det(U) and tr(A) = tr(U), and the result
follow. |
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