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Orthogonal Matrices

Definition
An n × n matrix A is a orthogonal if its inverse is equal to its transpose,
i.e., A−1 = AT.

Example
√
2

2

[
1 1

−1 1

]
and

1

7

 2 6 −3
3 2 6

−6 3 2


are orthogonal matrices (verify).
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Theorem
The following are equivalent for an n × n matrix A.

1. A is orthogonal.
2. The rows of A are orthonormal.
3. The columns of A are orthonormal.

Proof.
“(1) ⇐⇒ (3)": Write A = [~a1, · · ·~an].

A is orthogonal ⇐⇒ ATA = In ⇐⇒

~aT
1

...
~an

 [~a1, · · ·~an] = In

⇐⇒


~a1 ·~a1 ~a1 ·~a2 · · · ~a1 ·~an

~a2 ·~a1 ~a2 ·~a2 · · · ~a2 ·~an
...

...
. . .

...
~an ·~a1 ~an ·~a2 · · · ~an ·~an

 =


1 0 · · · 0

0 1
. . . 0

...
. . .

. . .
...

0 0 · · · 1



“(1) ⇐⇒ (2)": Similarly (Try it yourself). �
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Example

A =

 2 1 −2
−2 1 2
1 0 8


has orthogonal columns, but its rows are not orthogonal (verify).

Normalizing the columns of A gives us the matrix

A′ =

 2/3 1/
√
2 −1/3

√
2

−2/3 1/
√
2 1/3

√
2

1/3 0 4/3
√
2

 ,

which has orthonormal columns. Therefore, A′ is an orthogonal matrix.

If an n × n matrix has orthogonal rows (columns), then normalizing the
rows (columns) results in an orthogonal matrix.
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Example ( Orthogonal Matrices: Products and Inverses )
Suppose A and B are orthogonal matrices.

1. Since
(AB)(BTAT) = A(BBT)AT = AAT = I.

and AB is square, BTAT = (AB)T is the inverse of AB, so AB is
invertible, and (AB)−1 = (AB)T. Therefore, AB is orthogonal.

2. A−1 = AT is also orthogonal, since

(A−1)−1 = A = (AT)T = (A−1)T.

Remark ( Summary )

If A and B are orthogonal matrices, then AB is orthogonal and A−1 is
orthogonal.
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Orthogonal Diagonalization and Symmetric Matrices

Definition
An n × n matrix A is orthogonally diagonalizable if there exists an
orthogonal matrix, P, so that P−1AP = PTAP is diagonal.

Theorem (Principal Axis Theorem)
Let A be an n × n matrix. The following conditions are equivalent.

1. A has an orthonormal set of n eigenvectors.
2. A is orthogonally diagonalizable.
3. A is symmetric.
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Proof. ( (1) ⇒ (2))

Suppose {~x1,~x2, . . . ,~xn} is an orthonormal set of n eigenvectors of A. Then
{~x1,~x2, . . . ,~xn} is a basis of Rn, and hence P =

[
~x1 ~x2 · · · ~xn

]
is an

orthogonal matrix such that P−1AP = PTAP is a diagonal matrix.
Therefore A is orthogonally diagonalizable.



Proof. ( (2) ⇒ (1))
Suppose that A is orthogonally diagonalizable. Then there exists an
orthogonal matrix P such that PTAP is a diagonal matrix. If P has
columns ~x1,~x2, . . . ,~xn, then B = {~x1,~x2, . . . ,~xn} is a set of n orthonormal
vectors in Rn. Since B is orthogonal, B is independent; furthermore, since
|B| = n = dim(Rn), B spans Rn and is therefore a basis of Rn.
Let PTAP = diag(`1, `2, . . . , `n) = D. Then AP = PD, so

A
[

~x1 ~x2 · · · ~xn
]

=
[

~x1 ~x2 · · · ~xn
]


`1 0 · · · 0
0 `2 · · · 0
...

...
...

0 0 · · · `n


[

A ~x1 A ~x2 · · · A ~xn
]

=
[
`1 ~x1 `2 ~x2 · · · `n ~xn

]
Thus A~xi = `i~xi for each i, 1 ≤ i ≤ n, implying that B consists of
eigenvectors of A. Therefore, A has an orthonormal set of n eigenvectors.



Proof. ((2) ⇒ (3))
Suppose A is orthogonally diagonalizable, that D is a diagonal matrix, and
that P is an orthogonal matrix so that P−1AP = D.

Then P−1AP = PTAP,
so

A = PDPT.

Taking transposes of both sides of the equation:

AT = (PDPT)T = (PT)TDTPT

= PDTPT (since (PT)T = P)
= PDPT (since DT = D)

= A.

Since AT = A, A is symmetric.
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Proof. ((3) ⇒ (2))
If A is n × n symmetric matrix, we will prove by induction on n that A is
orthogonal diagonalizable. If n = 1, A is already diagonalizable. If n ≥ 2,
assume that (3)⇒(2) for all (n − 1)× (n − 1) symmetric matrix.

First we know that all eigenvalues are real (because A is symmetric). Let
λ1 be one real eigenvalue and ~x1 be the normalized eigenvector. We can
extend {~x1} to an orthonormal basis of Rn, say {~x1, · · · ,~xn} by adding
vectors. Let P1 = [~x1, · · · ,~xn]. So P is orthogonal.
Now we can apply the technical lemma proved in Section 5.5 to see that

PT
1 AP1 =

[
λ1 B
~0 A1

]
.

Since LHS is symmetric, so does the RHS. This implies that B = O and A1

is symmetric.



Proof. ((3) ⇒ (2) – continued)
By induction assumption, A1 is orthogonal diagonalizable, i.e., for some
orthogonal matrix Q and diagonal matrix D, A1 = QDQT. Hence,

PT
1 AP1 =

[
λ1 ~0T

~0 QDQT

]
=

[
1 ~0T

~0 Q

] [
λ1 ~0T

~0 D

] [
1 ~0T

~0 QT

]
which is nothing but

A = P1

[
1 ~0T

~0 Q

] [
λ1 ~0T

~0 D

] [
1 ~0T

~0 QT

]
PT

1

=

(
P1

[
1 ~0T

~0 Q

])[
λ1 ~0T

~0 D

](
P1

[
1 ~0T

~0 Q

])T

.

Finally, it is ready to verify that the matrix

P1

[
1 ~0T

~0 Q

]
is a diagonal matrix. This complete the proof of the theorem. �



Definition
Let A be an n × n matrix. A set of n orthonormal eigenvectors of A is
called a set of principal axes of A.



Problem
Orthogonally diagonalize the matrix

A =

 1 −2 −2
−2 1 −2
−2 −2 1

 .

Solution
I cA(x) = (x + 3)(x − 3)2, so A has eigenvalues λ1 = 3 of multiplicity

two, and λ2 = −3.

I {~x1,~x2} is a basis of E3(A), where ~x1 =

 −1
0
1

 and ~x2 =

 −1
1
0

.

I {~x3} is a basis of E−3(A), where ~x3 =

 1
1
1

.

I {~x1,~x2,~x3} a linearly independent set of eigenvectors of A, and a basis
of R3.
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Solution (continued)
I Orthogonalize {~x1,~x2,~x3} using the Gram-Schmidt orthogonalization

algorithm.

I Let ~f1 =

 −1
0
1

 , ~f2 =

 −1
2

−1

 and ~f3 =

 1
1
1

. Then {~f1, ~f2, ~f3} is an

orthogonal basis of R3 consisting of eigenvectors of A.
I Since ||~f1|| =

√
2, ||~f2|| =

√
6, and ||~f3|| =

√
3,

P =

 −1/
√
2 −1/

√
6 1/

√
3

0 2/
√
6 1/

√
3

1/
√
2 −1/

√
6 1/

√
3


is an orthogonal diagonalizing matrix of A, and

PTAP =

 3 0 0
0 3 0
0 0 −3

 .

�
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Theorem
If A is a symmetric matrix, then the eigenvectors of A corresponding to
distinct eigenvalues are orthogonal.

Proof.
Suppose λ and µ are eigenvalues of A, λ 6= µ, and let ~x and ~y, respectively,
be corresponding eigenvectors, i.e., A~x = λ~x and A~y = µ~y. Consider
(λ− µ)~x · ~y.

(λ− µ)~x · ~y = λ(~x · ~y)− µ(~x · ~y)
= (λ~x) · ~y − ~x · (µ~y)
= (A~x) · ~y − ~x · (A~y)
= (A~x)T~y − ~xT(A~y)
= ~xTAT~y − ~xTA~y
= ~xTA~y − ~xTA~y since A is symmetric
= 0.

Since λ 6= µ, λ− µ 6= 0, and therefore ~x · ~y = 0, i.e., ~x and ~y are orthogonal.
�
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Remark ( Diagonalizing a Symmetric Matrix )
Let A be a symmetric n × n matrix.

1. Find the characteristic polynomial and distinct eigenvalues of A.
2. For each distinct eigenvalue λ of A, find an orthonormal basis of

EA(λ), the eigenspace of A corresponding to λ. This requires using the
Gram-Schmidt orthogonalization algorithm when dim(EA(λ)) ≥ 2.

3. By the previous theorem, the eigenvectors of distinct eigenvalues
produce orthogonal eigenvectors, so the result is an orthonormal basis
of Rn.



Problem
Orthogonally diagonalize the matrix

A =

 3 1 1
1 2 2
1 2 2

 .

Solution
1. Since row sum is 5, λ1 = 5 is one eigenvalue, corresponding eigenvector

should be (1, 1, 1)T. After normalization it should be

~v1 =


1√
3
1√
3
1√
3


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Solution (continued)

2. Since last two rows are identical, det(A) = 0, so λ2 = 0 is another
eigenvalue, corresponding eigenvector should be (0, 1,−1)T. After
normalization it should be

~v2 =

 0
1√
2
1√
2





Solution (continued)

3. Since tr(A) = 7 = λ1 + λ2 + λ3, we see that λ3 = 7− 5− 0 = 2. Its
eigenvector should be orthogonal to both ~v1 and ~v2, hence,
~v3 = (2,−1,−1). After normalization,

2√
6

− 1√
2

− 1√
2


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1 2 2
1 2 2
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 0 2√
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1√
3

1√
2

− 1√
2

1√
3

1√
2

− 1√
2

1√
3
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0 0 0
0 2 0
0 0 5


 0 1√

2

1√
2

2√
6

− 1√
2

− 1√
2

1√
3

1√
3

1√
3


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Solution (continued)
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Quadratic Forms

Definitions
Let q be a real polynomial in variables x1 and x2 such that

q(x1, x2) = ax2
1 + bx1x2 + cx2

2.

Then q is called a quadratic form in variables x1 and x2. The term bx1x2 is
called the cross term. The graph of the equation q(x1, x2) = 1, is call a
conic in variables x1 and x2.
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Example
Below is the graph of the equation x1x2 = 1.

0
x1x2 = 1

x1

x2

0 y2
1 − y2

2 = 1

y1y2

x1

x2

Let y1 and y2 be new variables such that

x1 = y1 + y2 and x2 = y1 − y2,

i.e., y1 = x1+x2
2

and y2 = x1−x2
2

. Then x1x2 = y2
1 − y2

2, and y2
1 − y2

2

is a
quadratic form with no cross terms, called a diagonal quadratic form; y1

and y2 are called principal axes of the quadratic form x1x2.
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Principal axes of a quadratic form can be found by using orthogonal
diagonalization.

Problem
Find principal axes of the quadratic form q(x1, x2) = x2

1 + 6x1x2 + x2
2, and

transform q(x1, x2) into a diagonal quadratic form.

Solution
Express q(x1, x2) as a matrix product:

q(x1, x2) =
[

x1 x2

] [ 1 6
0 1

] [
x1

x2

]
. (1)

We want a 2× 2 symmetric matrix. Since 6x1x2 = 3x1x2 + 3x2x1, we can
rewrite (1) as

q(x1, x2) =
[

x1 x2

] [ 1 3
3 1

] [
x1

x2

]
. (2)

Setting ~x =

[
x1

x2

]
and A =

[
1 3
3 1

]
, q(x1, x2) = ~xTA~x.

We now orthogonally diagonalize A.
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Solution (continued)

cA(z) =
∣∣∣∣ z − 1 −3

−3 z − 1

∣∣∣∣ = (z − 4)(z + 2),

so A has eigenvalues λ1 = 4 and λ2 = −2.

~z1 =

[
1
1

]
and ~z2 =

[
−1
1

]
are eigenvectors corresponding to λ1 = 4 and λ2 = −2, respectively.
Normalizing these eigenvectors gives us the orthogonal matrix

P =
1√
2

[
1 −1
1 1

]
such that PTAP =

[
4 0
0 −2

]
= D.

Thus A = PDPT, and

q(x1, x2) = ~xTA~x = ~xT(PDPT)~x = (~xTP)D(PT~x) = (PT~x)TD(PT~x).
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Solution (continued)
Let

~y =

[
y1

y2

]
= PT~x =

1√
2

[
1 1
−1 1

] [
x1

x2

]
=

1√
2

[
x1 + x2

x2 − x1

]
.

Then

q(y1, y2) = ~yTD~y =
[

y1 y2

] [ 4 0
0 −2

] [
y1

y2

]
= 4y2

1 − 2y2
2.

Therefore, the principal axes of q(x1, x2) = x2
1 + 6x1x2 + x2

2 are

y1 =
1√
2
(x1 + x2)

and
y2 =

1√
2
(x2 − x1),

yielding the diagonal quadratic form

q(y1, y2) = 4y2
1 − 2y2

2.

�



Solution (continued)
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Problem
Find principal axes of the quadratic form

q(x1, x2) = 7x2
1 − 4x1x2 + 4x2

2,

and transform q(x1, x2) into a diagonal quadratic form.

Solution ( Final Answer )

q(x1, x2) has principal axes

y1 =
1√
5
(−2x1 + x2),

y2 =
1√
5
(x1 + 2x2).

yielding the diagonal quadratic form

q(y1, y2) = 8y2
1 + 3y2

2.
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Theorem (Triangulation Theorem – Schur Decomposition)
Let A be an n × n matrix with n real eigenvalues. Then there exists an
orthogonal matrix P such that PTAP is upper triangular.



Corollary
Let A be an n×n matrix with real eigenvalues λ1, λ2, . . . , λn, not necessarily
distinct. Then det(A) = λ1λ2 · · ·λn and tr(A) = λ1 + λ2 + · · ·+ λn.

Proof.

By the theorem, there exists an orthogonal matrix P such that PTAP = U,
where U is an upper triangular matrix. Since P is orthogonal, PT = P−1, so
U is similar to A; thus the eigenvalues of U are λ1, λ2, . . . , λn. Furthermore,
since U is (upper) triangular, the entries on the main diagonal of U are its
eigenvalues, so det(U) = λ1λ2 · · ·λn and tr(U) = λ1 + λ2 + · · ·+ λn. Since
U and A are similar, det(A) = det(U) and tr(A) = tr(U), and the result
follow. �
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